	AY2022	2023	2024	2025	2026	2027	2028	2029	2030	2040
		Fourth M	ledium-Term Objectiv	ves for the 2022–20	27 Period		Fifth Medium-Tern	Objectives for the	2028–2033 Period	
Decarbonization Unit Goals for 2030: To propose innovative technologies and a social vision for discontinuous innovation to achieve carbon neutrality	Goals and In order to a decarbonizz ideal future research gr decarbonizz contribute to decarbonizz	Vision achieve Japan's g ation of society as society and socia oups such as mat ation. Kyushu Univ o the creation inno ation, and the deve neetings held a	bal of complete ca a whole, rather that design. At the cor- erials and devices versity will work with evalive technologie elopment of highly as necessary fo	rbon neutrality by an simply extend re of the Decarbo research, system h the Fukuoka an es, but also to rec skilled profession r goal sharing	/ 2050, it is necess ing or optimizing co onization Unit is the ns research, and u nd Kyushu regions commendations on nals who will drive g, strengthening	ary to foster entire nventional resear Platform of Inter/ rban habitat resea on carbon-neutral regional growth st innovation.	ely new, innovative rch and technolog Transdisciplinary arch, with a view to lity initiatives as a trategies, the con- sharing issues	e technologies tha ies, and to prese Energy Research o social implemer Green Innovation struction of a soci o, progress rep	at will enable the nt a vision of the n uniting elementa ntation of n Hub. We not onl al model for	u y
Group for the Reduction of Energy Consumption Through Hydrogen	Strengthe across ag doctoral s continued and its ac	n professional o e groups, incluo tudents, to facil development o tivities	development ding among itate the f each facility	Further acquisit advanc	increase resear tions to strengthe ed research cap	ch project en abilities.	Strengthen alumni to m truly global hydrogen fir	the network of 1, ake the university research hub in t eld.	000 / a he	oject Initiatives
Play a leading role in achieving a hydrogen-based society	Develop str based socie national co	ategies for buildin ety and have them uncils and other b	g a hydrogen- i adopted by odies.	Strength within the Kyushu the "Hyd	en multidisciplinary e university to acce University Hydroge rogen Campus" co	collaboration elerate the n Project and ncept.	Play a leadi hydrogen in 2030	ng role in Japan's plementation pla	in for	
	Contribute hydrogen n funded rese	to advanced resea naterials by condu earch.	arch in the field of cting large-scale	Acquire projects construc infrastruc	new large-scale fur and contribute to tl tion of key hydroge cture for the future.	nded research	Contribute t and internat the field of t increasing t collaborativ	o advanced rese ional standardiza hydrogen materia hoth funded and ju e research.	arch tion in Is by oint	
	Increase fu research to developme property as	nded and joint col enhance researc nt capabilities and sets.	laborative h and intellectual	Create a developr industry-	n externalized rese nent corporation th academia joint ver	earch and rough tures	Build an eco both in and	osystem for innov outside the cente	ration er.	
	Continue to recommend without eng the diversit	o offer examinatior ded candidates an lineering backgrou y of majors.	as for self- nong students inds to enhance	Further eductoral among co with rela	encourage students programs by utilizi other measures, an ted departments.	s to enter ng fellowships, d collaborating	Strengthen governmen opportunitie acquired in society.	industry-academi networks to exp s to use expertise the field to contril	a- and poute to	
	Accelerate electrocher internationa	basic research in nical energy conve al collaboration	fields such as ersion through	Boost int research research neutrality	ternational joint col 1 to accelerate basi 1 that contributes to y.	laborative c hydrogen carbon	Contribute t collaboratio a hub for th among tale English is th	o international n in the hydrogen e international mo nted researchers, ne common langu	field as bbility where age	

	AY2022	2023	2024	2025	2026	2027	2028	2029	2030	2040
		Four	th Medium-Term Obje	ectives for the 2022-	-2027 Period		Fifth Medium-	Term Objectives for the	e 2028–2033 Perioc	i
CO ₂ Capture and	Establish e	efficient CO_2 c	apture and conv	version technol	ogies				> • •	roup Initiatives
Conversion				Develop	CO ₂ capture and	d conversion sy	stems		>	roiect Initiatives
Goals for 2030:				Research a conversion	and development	on the socioecond	mic evaluation of	CO ₂ capture and	>	
Research, development, and				Produce a	social design that	incorporates CO ₂	capture and conv	version systems	>	
CO_2 capture, utilization, and	Develop CC	0 ₂ separation me	embranes that facil	itate direct air ca	pture (DAC)				>	
conversion systems				Develop sy membrane	rstems for direct C s	CO ₂ capture from t	he atmosphere us	sing separation	\rangle	
				Develop sy separation	stems that integra membranes	ate atmospheric C	O ₂ capture and u	ilization using	\rangle	
				Develop el compound	ectrocatalysts for s	the highly selectiv	e conversion of C	O ₂ to valuable	\geq	
	Develop ele	ctrocatalysts for	the highly selectiv	e conversion of (CO ₂ to valuable co	ompounds			\geq	
	Fabricate a	reactor for the e	efficient production	of valuable comp	oounds from CO ₂				\geq	
	Develop and	d demonstrate e	quipment capable	of recovering and	d utilizing the CO_2	n of LNG and LPG	\geq			
				Develop ar exhaust ga exploration	nd demonstrate eo ses produced in t vessels	quipment for the ca hermal treatment	apture and utilizat equipment and cr	ion of CO ₂ from ewed space	\rangle	
				Develop ar atmospher	nd demonstrate ec ic CO ₂	quipment capable	of capturing and ι	utilizing	\geq	
	Fabricate ec agriculture f	quipment for the acilities and dev	capture and stora elop systems for g	ge of CO ₂ from th preenhouse hortic	ne exhaust gas prouting and agricult	oduced in heating ture	greenhouse horti	culture and	\rangle	
	Develop a s	ystem to capture	e, reuse, and conti	rol the emission o	of CO ₂ retained in	the upper parts of	horticultural facili	ties	\geq	
	Achieve on-	site undergroun	d biomethanation	of geosequestere	d CO ₂ using meth	anogens			\geq	
	Achieve ene	ergy-saving CO ₂	capture processes	s using new amin	e absorbents				\geq	
	Develop oxy	/gen dioxide-tole	erant electrolytes t	hrough DX					>	
	Develop act	ive electrodes a	nd catalysts throug	gh DX						
	Develop full	y solid-state dev	vices for CO ₂ resou	arce conversion a	nd the manufactu	re of high-value-a	dded raw materia	ls through DX	\geq	
	Conduct eco materials ar	onomic evaluation nd design a socie	on of fully solid-sta ety that incorporate	te devices for CC es these devices	2 resource conver	rsion and the man	utacture of high-v	alue-added raw	>	

		AY2022	2023	2024	2025	2026	2027	2028	2029	2030	2040			
			Fourth M	edium-Term Objectiv	ves for the 2022–202	27 Period		Fifth Medium-Tern	n Objectives for the	2028–2033 Period				
(Group for New Urban	Internationa	lly deploy BDE	and built enviro	nment simulatio	on tools, and de	sign and constr	ruct ZEBs	$ \longrightarrow $	• Gro	up Initiatives			
I	Models	Internationa	lly deploy BeCA	∖T, a design cei	nter based on u	rban and built e	nvironment tec	hnology	$ \longrightarrow $	• Pro	ject Initiatives			
	Goals for 2030:	Develop optimal control and nudge systems for built environments and energy using IoT/AI for the era of Society 5												
	Propose an energy- independent, recycling-	Develop an	$ \longrightarrow $,										
	oriented, sustainable city model utilizing urban and built environment	Plan infrastructure facilities and regional designs for future cities (targeting specific regions) to achieve a decarbonized society												
l	technologies	Develop built en BDE (Building D	vironment simulatior ata Exchange) netw	tools and ork tools	Implement trials a BDE and built env in educational res	nd international depl vironment simulation earch and BeCAT)	oyment of tools (for use	Implement BDE a environment simu society through in academia collabo Design and const Energy Buildings built environment	nd built lation tools in dustry- ration ruct Zero using BDE and simulation					
		Develop and im	plement the BeCAT	Program to integrate	urban and built envi	ronment technology	with design gion and communica	ate them internationa	Ily					
		Engage in pract companies)	ical design and socia	I implementation bas	sed on urban and bu	It environment techn Form a center for implementation of	ologies (in cooperat urban and built envi f university resource	ronwith local governi ronment design (soci s)	al					
		Develop an IoT and sensing tec Create Al-based the built environ	data collection syste hnology I quantitative evaluat ment and energy	m using BEMS	Build IoT/Al syste environment data	ms for the collection of and building environ	of occupant ment analysis	Develop optimal o nudge systems fo environments and IoT/AI	control and r built l energy using					
		Develop method demand of time-	ls for forecasting the varying urban and b	supply and uilding energy	Develop an urbar simulator that cou	energy supply and c ples GIS with buildin	lemand gs and facilities	Create a platform impact of the intro elemental energy Develop a future u plan to achieve ca for Fukuoka City	to assess the duction of technologies rban energy rbon neutrality					
		Conceptualize a independent, re- oriented, future - utilizing DER an	in energy- cycling- city model d Smart Grid	Design future citie carbon-neutral so Develop energy in specification stan regions Plan and develop storage, and distr	es (for specific regior ciety nfrastructure plans a dards appropriate fo energy supply and d ibution technologies	is) to achieve a nd ZEB r targeted demand plans for targ	geted regions based	on energy conservat	ion, creation,					

	AY2022	2023	2024	2025	2026	2027	2028	2029	2030	2040
		Fourth I	Medium-Term Object	ives for the 2022–20	027 Period		Fifth Medium-1	erm Objectives for the	e 2028–2033 Peri	od
Group for Remapping a	Research	and developm	ent of offshore v	wind power ger	neration				> 「	Group Initiatives
Sustainable Energy	Research	and developm	ent of a sustain	ability value as	sessment moc	el for energy teo	chnologies		> .	Project Initiatives
Future	Conduct I	R&D on the soc	ioeconomic eva	luation of ener	gy conversion				>	
Goals for 2030: Reman a Sustainable	Research	and developm	>							
Energy Future	Research	and developm	>							
	Conduct re	search into wind	\geq							
				Conduct rese knowledge to farms	earch, developmo promote the wid	ent, and social imp despread establish	lementation base ment of large-sca	ed on integrative ale offshore wind	\rangle	
	Develop ar the life cycl	ESG assessmen of energy techn	it framework that a ologies	accounts for	>					
				Develop a mo energy techno human capita	odel for evaluatin blogy on natural, I using the Inclus	g the impact of artificial, and ive Wealth Index	\rangle			
						Evaluate dome technologies, i direct air captu	estic and internati ncluding new tec ire (DAC) for soc	onal energy hnologies such as ial implementation	\rangle	
	Clarify the	impact of energy	conversion on soc	iety and econom	ic and environm	ental indicators		,	>	
	Conduct Te	echno-economic e	evaluation (TEA) c	f future energy s	ystems				\geq	
	Elucidate t	he nexus of techn	ology, people, and	d systems associ	ated with energy	conversion			\triangleright	
	Develop in	vestigative and ev	aluative technolog	gies for supercriti	cal geothermal s	ystems			>	
	Enhance th	ne sustainability of	f conventional geo	othermal power ge	eneration				\geq	
	Increase th	e social acceptab	ility of geothermal	power to increas	se generation ca	pacity			\geq	
	Develop ch	aracterization tec	hnology for advar	iced nuclear reac	tors (high-tempe	rature gas-cooled	reactors)		\geq	
	Research t	he environmental	impact of advanc	ed nuclear reacto	ors				\geq	
	Explore ne	w applications for	advanced nuclea	r reactors					\geq	

	AY2022	2023	2024	2025	2026	2027	2028	2029	2030	2040				
		Fourth N	ledium-Term Objectiv	ves for the 2022–20	27 Period		Fifth Medium-Ter	m Objectives for the	2028–2033 Perio	d				
Photochemical		Develop and	elucidate the m	nechanism of C	O ₂ photoreducti	on catalysts th	at function harm	noniously	> •	Group Initiatives				
Technology Innovation Group		Pursue funct	ional chemistry	of the triplet sta	ate				> • F	Project Initiatives				
		Develop CO ₂	sensing and co	onversion techr	nologies				>					
Goals for 2030: Create photochemical		Develop ene	Develop energy-saving light sources utilizing organic optical materials											
technologies that will revolutionize the world		Create organ	ic devices that	can be manufa	ctured at a low	cost			>					
		Facilitate the tra one-electron re process for artii photosynthetic Develop spectr Research high Harness unuse Integrate up-co	acilitate the tracing of the ne-electron reduction occess for artificial notosynthetic photocatalysts evelop spectroscopic techniques to observe the downstream effects of multi-electron transfer photoreactions tesearch highly efficient catalysts based on information on intermediates in the reaction process larness unused sunlight through up-conversion											
		Replace therm	al processes with	optical ones thro Establish ventu	ugh up-conversior ure businesses to	achieve social im	plementation of u	o-conversion	>					
		Develop o fluor												
		to detect the co CO ₂ by utilizing induced electro	n transfer	,										
		Develop a hydri facilitates fluore of CO ₂ adsorpti behavior Develop a biorr catalyst that ab converts it to a and releases it	ogel that escent detection on/desorption imetic sorbs CO ₂ , C ₁ source,											

	AY2022	AY2022 2023 2024 2025 2026 2027 2028 2029 2030									
		Fourth M	2028–2033 Period								
Photochemical Technology Innovation Group		Develop an ultra-low power light source using charge- transfer excitation states • Group Develop a molecular heat pump driven by low-energy light • Project Develop a heat recovery system using solar and ultra-low power light sources • Project									
		Develop a suite of materials for the production of field emission devices using inkjet printers Develop high-efficiency field emission devices using radicals Develop new chemical processes catalyzed by electric fields									

	AY2022	2023	2024	2025	2026	2027	2028	2029	2030	2040			
		Fourth I	Medium-Term Objec	tives for the 2022–20	27 Period		Fifth Medium-Ter	m Objectives for the	2028–2033 Peri	bo			
Group for Promoting Regional Collaboration Goals for 2030: Implement five energy- saving technologies in collaboration with local	Build and s Conduct p and food e Promote c	Build and strengthen partnerships with local governments in the use of local energy • Group Initiatives Conduct proof-of-concept trials of energy, information, and food ecosystems in Itoshima Science Village • Project Initiatives Promote collaboration with industries in the Kyushu region aimed at implementing university technologies • Project Initiatives											
governments	Demonstrate Promote the evaluate the	e the usefulness use of DC micro ir utilization	of DC microgrids	using renewable	energy	>							
	Construct an assessment technologies developmen	nd apply a sustai model for energ s and apply it to t t Evaluate the assessment Nogata City	nability value y echnological sustainability val model through its and Itoshima City	lue s application in	>								
	Promote col use of DC m Conduct reg	laboration with th nicrogrids jional implementa	ne Kyushu semico ation of technolog	onductor industry t	o expand the	>			×				
	Integrate the	e efforts of each	of the five groups	and implement th	em throughout th	e region		>	>				

										Group Leader Name:	<u>Kazunari Sasaki</u>
Group Name	Goal	Project Affiliation	Manager Position	Name	Action Item 1	Action Item 2	Action Item 3	Action Item 4	Action Item 5	Collaborations (e.g., Other groups, other units, DDIn ²)	Project URL
	<u>Group-wide:</u> Goal for 2030: Play a leading role in achieving a hydrogen-based society				Strengthen professional development across age groups, including among doctoral students, to facilitate the continued development of each facility and its activities (Initiative Period: 2022–2024)	Further increase research project acquisitions to strengthen advanced research capabilities. (Initiative Period: 2025–2027)	Strengthen the network of 1,000 alumni to make the university a truly global research hub in the hydrogen field. (Initiative Period: 2028–2030)	_		Present the comprehensive efforts made since the university's relocation to Ito Campus as a leading model for the creation of a future society under the Platform of Inter/Transdisciplinary Energy Research.	Pamphlet: Kyushu University Center-of- Excellence for Hydrogen Energy https://h2.kyushu- u.ac.jp/english/index.html
Reducing energy consumption with hydrogen	Research into Hydrogen Energy through Industry, Academia, Government and Local Community Cooperation: Goal for 2030: Continue to lead the way in promoting and educating the public about hydrogen energy.	<u>International Hydrogen</u> Energy Research Center	<u>Director</u>	<u>Kazunari</u> <u>Sasaki</u>	Develop strategies for building a hydrogen-based society and have them adopted by national councils and other bodies. (Initiative Period: 2022–2024)	Strengthen multidisciplinary collaboration within the university to accelerate the Kyushu University Hydrogen Project and the "Hydrogen Campus" concept. (Initiative Period: 2025–2027)	Play a leading role in Japan's hydrogen implementation plan for 2030. (Initiative Period: 2028–2030)	_	_	Drive collaboration with government agencies (Cabinet Office; Ministry of Education, Culture, Sports, Science and Technology; Ministry of Economy, Trade and Industry; Ministry of the Environment; NEDO; and JST) and the region (Kyushu; Fukuoka Prefecture; Fukuoka City).	https://h2.kyushu- u.ac.jp/english/index.html
	Research into Hydrogen Industrial Use and Storage: Goal for 2030: Develop a comprehensive range of hydrogen- resistant structural and elemental materials.	Research Center for Hydrogen Industrial Use and Storage (Hydrogenius)	<u>Director</u>	<u>Joichi</u> Sugimura	Contribute to advanced research in the field of hydrogen materials by conducting large-scale funded research. (Initiative Period: 2022–2024)	Acquire new large-scale funded research projects and contribute to the construction of key hydrogen infrastructure for the future. (Initiative Period: 2025–2027)	Contribute to advanced research and international standardization in the field of hydrogen materials by increasing both funded and joint collaborative research. (Initiative Period: 2028–2030)	_	-	Collaborate with other groups to build the infrastructure for a hydrogen-based society.	https://hydrogenius.kyushu- u.ac.jp/en/
	Joint Industry-Academia Research into Next-Generation Fuel Cells: Goal for 2030: Become an innovation hub for industry-academia co-creation in the hydrogen fuel cell field.	<u>Next-Generation Fuel</u> <u>Cell Research Center</u> (NEXT-FC)	<u>Director</u>	<u>Kazunari</u> <u>Sasaki</u>	Increase funded and joint collaborative research to enhance research and development capabilities and intellectual property assets. (Initiative Period: 2022–2024)	Create an externalized research and development corporation through industry-academia joint ventures. (Initiative Period: 2025–2027)	Build an ecosystem for innovation both in and outside the center. (Initiative Period: 2028–2030)	_	_	Work closely with the Open Innovation Platform (OIP) to establish the functions of a research and development company in the hydrogen field and play a leading part in industry-academia co-creation.	http://fc.kyushu-u.ac.jp/ (Japanese)
 	Hydrogen Energy Systems Education: Goal for 2030: Produce a total of 1,000 master's and doctoral degree holders in fields related to hydrogen energy systems. (Ongoing since 2010)	<u>Department of Hydrogen</u> <u>Energy Systems,</u> <u>Graduate School of</u> <u>Engineering</u>	<u>Head of</u> Department	<u>Shigeru</u> <u>Hamada</u>	Continue to offer examinations for self-recommended candidates among students without engineering backgrounds to enhance the diversity of majors. (Initiative Period: 2022–2024)	Further encourage students to enter doctoral programs by utilizing fellowships and collaborating with related departments. (Initiative Period: 2025–2027)	Strengthen industry-academia- government networks to expand opportunities to use expertise acquired in the field to contribute to society. (Initiative Period: 2028–2030)	_		Collaborate with related departments to drive interdisciplinary education and professional development within the Decarbonization Unit.	https://www.eng.kyushu-u.ac.jp/e/
	Carbon Energy Research Goal for 2030: Encourage international academic collaboration in the field of hydrogen technology.	International Institute for Carbon-Neutral Energy Research (I²CNER)	<u>Deputy</u> <u>Director</u>	<u>Hiroshige</u> <u>Matsumoto</u>	Accelerate basic research in fields such as electrochemical energy conversion through international collaboration. (Initiative Period: 2022–2024)	Boost international joint collaborative research to accelerate basic hydrogen research that contributes to carbon neutrality. (Initiative Period: 2025–2027)	Contribute to international collaboration in the hydrogen field as a hub for global exchange among talented researchers, where English is the lingua franca (Initiative Period: 2028–2030)	_	_	Play a leading part in international interdisciplinary collaboration within the Decarbonization Unit.	https://i2cner.kyushu-u.ac.jp/en/

July 23, 2022

Unit Name:

Unit Leader Name:

Decarbonization

<u>Yoshio Hisaeda</u> <u>Kazunari Sasaki</u>

Hydrogen Energy:

From Research and Education to Industry-Academia Collaboration, Demonstrations, and an Innovation Hub

Promoting comprehensive efforts from advanced research and education to industry-academia collaboration, demonstration, and social implementation

Research and Education

Hydrogen Energy Research

International Research Center for Hydrogen Energy

Hydrogen Materials Research

Research Center for Hydrogen Industrial Use and Storage (Hydrogenius)

 Comprehensive Basic Research in the Field of Decarbonization

International Institute for Carbon-Neutral Energy Research (I²CNER)

Education Through Hydrogen-Specific Majors (A World-First)

Major in Hydrogen Energy Systems

Produce **1,000** doctoral and master's degree holders between 2010 and 2030

Achieving a Future Society with Integrative Knowledge (led by the President) Platform of Inter/Transdisciplinary Energy Research (Q-PIT) Q-Energy Innovator Fellowship

Industry-Academia Collaboration

Industry-Academia Research Collaboration on **Next-Generation Fuel Cells (A World First)** Next-Generation Fuel Cell Research Center (NEXT-FC)

I ² CNER	NEXT-FC
1	
AND N	the second control design to the second state to the second second second second second second second second se

 Research Collaboration on Hydrogen Materials

HydroMate Committee (AIST-Kyushu University-Fukuoka University-Fukuoka Prefecture Collaborative Committee for Hydrogen Studies)

Support for Industrialization of Hydrogen **Products (Fukuoka Prefecture)**

Hydrogen Energy Test and Research Center (HyTRec)

Hvdrogen Stations Ito Campus

Demonstration

Ito Campus Hydrogen Town

Itoshima Citv

Implementation and **Future Prospects**

Strengthening Collaboration Inside and Outside the University

Creating an Innovation Hub for Decarbonization

Socially Implement Renewable Energy and Energy Storage Systems (Utilizing fuel cells and water electrolysis)

Propose Low-Carbon and Decarbonized Models for Society (Utilizing hydrogen, wind, geothermal, and other resources)

Contribute to Climate Crisis Response (Achieving zero emissions and reducing greenhouse gas emissions)

Fuel Cell Power

Group Namo	Goal	Project	Manager		Action Itom 1	Action Itom 2	Action Itom 3	Action Itom 4	Action Itom 5	Collaborations (e.g., Other	Project LIPI
Group Name	Guai	Affiliation	Position	Name		Action item 2	Action item 3		Action tiem 3	groups, other units, DDIn ²)	
	<u>Group-wide:</u> <u>Goal for 2030: Research, development,</u> <u>and social implementation of CO₂ capture, utilization, and conversion</u>				Establish efficient CO ₂ capture and conversion technologies	Develop CO ₂ capture and conversion systems	Research and development on the socioeconomic evaluation of CO ₂ capture and conversion	Produce a social design that incorporates CO ₂ capture and conversion systems (Initiative Period: 2025–2030)	_		
	<u>systems</u>										
	Research and Development of CO ₂ Capture and Conversion from the Atmosphere Using Membranes: Goals for 2030:	International Institute for <u>Carbon-Neutral Energy</u> Research (I ² CNER)	<u>Professor</u>	<u>Shigenori</u> Fujikawa	Develop CO ₂ separation membranes that facilitate direct air capture (DAC)	Develop systems for direct CO ₂ capture from the atmosphere using separation membranes	Develop systems that integrate atmospheric CO ₂ capture and utilization using separation membranes	Produce a social design that incorporates CO ₂ capture and conversion systems	_		https://k-nets.kyushu-u.ac.jp/en/ https://i2cner.kyushu- u.ac.jp/~fujikawa/en/ https://mozes.jp/en/
	system using membrane separation				(Initiative Period: 2022–2030)	(Initiative Period: 2025–2030)	(Initiative Period: 2025–2030)	(Initiative Period: 2025–2030)			
	Research and Development of CO ₂ Conversion Using Recovered CO ₂ and Renewable Resources: Goals for 2030: Synthesize valuable compounds from	Institute for Materials Chemistry and Engineering	<u>Professor</u>	<u>Miho</u> Yamauchi	Develop electrocatalysts for the highly selective conversion of CO ₂ to valuable compounds	Fabricate a reactor for the efficient production of valuable compounds from CO ₂		_	_		https://yamauchi-lab.com/
	renewable resources and CO ₂				(Initiative Period: 2022–2030)	(Initiative Period: 2022–2030)					
	Research and Development of the Capture and Utilization of CO ₂ from Various Emissions Sources:	Faculty of Engineering	<u>Professor</u>	<u>Yu Hoshino</u>	Develop and demonstrate equipment capable of recovering and utilizing the CO ₂ in exhaust gas from the combustion of LNG and LPG	Develop and demonstrate equipment for the capture and utilization of CO ₂ from exhaust gases produced in thermal treatment equipment and crewed space exploration vessels	Develop and demonstrate equipment capable of capturing and utilizing atmospheric CO ₂		_		https://sites.google.com/view/hoshi nolab-kyushu
CO ₂ Capture and Conversion	Goals for 2030: Demonstrate low-cost CO ₂ capture and utilization technologies				(Initiative Period: 2022–2030)	(Initiative Period: 2025–2030)	(Initiative Period: 2025–2030)				
	Research and Development of the Capture and Utilization of CO ₂ in Greenhouse Horticulture and Agriculture: Goals for 2030: Launch trials of CO ₂ capture and utilization systems and begin social	Faculty of Agriculture	<u>Associate</u> <u>Professor</u>	<u>Daisuke</u> Yasutake	Fabricate equipment for the capture and storage of CO2 from the exhaust gas produced in heating greenhouse horticulture and agriculture facilities and develop systems for greenhouse horticulture and agriculture	Develop a system to capture, reuse, and control the emission of CO ₂ retained in the upper parts of horticultural facilities	_	_	_		
	implementation in greenhouse horticulture and agriculture				(Initiative Period: 2022–2030)	(Initiative Period: 2022–2030)					
	Research and Development of the Biomethanation of Captured CO ₂ Solutions and Geosequestered CO ₂ :	Faculty of Engineering	<u>Professor</u>	<u>Yuichi Suga</u>	Achieve on-site underground biomethanation of geosequestered i CO ₂ using methanogens	Achieve energy-saving CO ₂ capture processes using new amine absorbents					
	Goals for 2030: Achieve underground biomethanation				(Initiative Period: 2022–2030)	(Initiative Period: 2022–2030)					
	Research and Development of CO ₂ Resource Conversion and the Manufacture of High-Value-Added Raw Materials Through Renewable Energy and DX: Goals for 2030: Develop fully solid-state devices for CO ₂	<u>Platform of</u> Inter/Transdisciplinary Energy Research	Professor	<u>Yoshihiro</u> Yamazaki	Develop oxygen dioxide-tolerant electrolytes through DX	Develop active electrodes and catalysts through DX	Develop fully solid-state devices for CO ₂ resource conversion and the manufacture of high-value-added raw materials through DX	Conduct economic evaluation of fully solid-state devices for CO ₂ resource conversion and the manufacture of high-value-added raw materials and design a society that incorporates these devices	_		https://q-pit.kyushu- u.ac.jp/yamazaki_en/index.html
	resource conversion and the manufacture of high-value-added raw materials				(Initiative Period: 2022–2030)	(Initiative Period: 2022–2030)	(Initiative Period: 2022–2030)	(Initiative Period: 2022–2030)			

<u>Unit Name: Decarbonization</u> <u>Unit Leader Name: Yoshio Hisaeda</u>

<u>Group Leader Name: Shigenori Fujikawa</u>

Using CO₂ Capture and Conversion to Build a Carbon-Recycling Society

Driving Cutting-Edge R&D and Social Implementation Through Interdisciplinary Industry-Academia Collaboration

Social Implementation Research Interdisciplinary Industry-Academia Collaboration A New Future of Recycling Carbon **Designing Future Products Based on CO₂-Related Research Research Technologies** Resources **Research Center for Negative Emissions** Technologies **Design and brand** Atmosphere An organization specializing in research on CO₂ recycling future products starting with the capture of CO_2 from the atmosphere and systems, based on research technologies, in CO₂ Separation collaboration with K-NETs Membrane the School of Design Moonshot Research and Development Program, Cabinet Office A large-scale national research program that aims to create **Reusable Carbo** System of Cooperation Among Companies disruptive innovations originating from Japan, promoting ambitious Materi CO₂ Converter for Social Implementation R&D (moonshots) that extend beyond conventional technologies Device

Research and development focused on CO₂-recycling systems for a "beyond zero" society

JST Strategic Basic Research Programs

Programs for the creation of innovative technological seeds that will lead to scientific and technological innovations to transform society and the economy and overcome the critical challenges facing Japan

"Creating innovative proton-conducting inorganic compounds by combining experimental and computational science"

Build a system for industry-academia collaboration through coordination with general trading companies

Consortium of Venture Businesses

Use in Agriculture

	Goal	Project	Manager		Action Item 1				A dia tan E	Collaborations (e.g., Other	Project URL
Group Name	Goal	Affiliation	Position	Name	Action Item 1	Action Item 2	Action item 3	Action Item 4	Action Item 5	groups, other units, DDIn ²)	Project URL
	<u>Group-wide:</u> Goal for 2030: Propose an energy- independent, recycling-oriented, sustainable city model utilizing urban and built environment technologies				Internationally deploy BDE and built environment simulation tools, and design and construct ZEBs (Initiative Period: 2022–2030)	Internationally deploy BeCAT, a design center based on urban and built environment technology (Initiative Period: 2022–2030)	Develop optimal control and nudge systems for built environments and energy using IoT/AI for the era of Society 5.0 (Initiative Period: 2022–2030)	<u>Develop an Urban Energy Supply</u> <u>and Demand Simulator and</u> <u>Formulate a Future Energy Plan for</u> <u>Fukuoka</u> (Initiative Period: 2022–2030)	Plan infrastructure facilities and regional designs for future cities (targeting specific regions) to achieve a carbon-neutral society (Initiative Period: 2022–2030)		http://suae-casia.arch.kyushu- u.ac.jp
	Design and Construct Zero Energy Buildings by Simulating the Built Environment Using Building Data Exchange Technology: Goal for 2030: Develop methods for estimating and designing built environments and energy performance	<u>Faculty of Human-</u> Environment Studies	<u>Professor</u>	<u>Akihito</u> Ozaki	Develop built environment simulation tools and BDE (Building Data Exchange) network tools (Initiative Period: 2022–2024)	Implement trials and international deployment of BDE and built environment simulation tools (for use in educational research and BeCAT) (Initiative Period: 2025–2027)	Implement BDE and built environment simulation tools in society through industry-academia collaboration (Initiative Period: 2028–2030)	Design and construct Zero Energy Buildings using BDE and built environment simulation (Initiative Period: 2028–2030)	_	Participate in the Fukuoka Green Innovation Challenge organized by the New Industrial Promotion Division of the Business Startup & Investment Promotion Department within the Economy, Tourism & Culture Bureau of Fukuoka City	https://www.city.fukuoka.lg.jp/kei zai/kagakugijutsu/business/green -innovation_hojokin_2022.html
Group for New Urban Models	Develop and Implement the BeCAT Program to Integrate Urban and Built Environment Technology with Design: Goal for 2030: Develop energy management for cities and buildings to achieve the required decarbonization performance	<u>Faculty of Human-</u> Environment Studies	<u>Associate</u> Professor	<u>Hirokazu</u> <u>Suemitsu</u>	<u>Develop and Implement the BeCAT</u> <u>Program to Integrate Urban and Built</u> <u>Environment Technology with</u> <u>Design:</u> (Initiative Period: 2022–2030)	Conceptualize environmental master plans and prototype designs suitable for the Asia-Oceania region and communicate them internationally (Initiative Period: 2022–2030)	Engage in practical design and social implementation based on urban and built environment technologies (in cooperation with local governments and companies) (Initiative Period: 2022–2030)	Form a center for urban and built environment design (social implementation of university resources) (Initiative Period: 2026–2030)	_	Collaborate with BeCAT (Built Environment Center with Art and Technology)	https://becat.kyushu-u.ac.jp/en/
	Develop Optimal Control and Nudge Systems for Built Environments and Energy Using IoT/AI for the Era of Society 5.0: Goal for 2030: Build IoT/AI systems for the collection of occupant environment data and building environment analysis	<u>Faculty of Human-</u> <u>Environment Studies</u>	<u>Assistant</u> Professor	<u>Yusuke</u> <u>Arima</u>	Develop an IoT data collection system using BEMS and sensing technology (Initiative Period: 2022–2024)	Create Al-based quantitative evaluation methods for the built environment and energy (Initiative Period: 2022–2024)	Build IoT/AI systems for the collection of occupant environment data and building environment analysis (Initiative Period: 2025–2027)	Develop optimal control and nudge systems for built environments and energy using IoT/AI (Initiative Period: 2028–2030)	_	Collaborate with the Department of Environmental Design, Faculty of Design Under implementation through the NEDO project.	https://wakasapo.nedo.go.jp/see ds/seeds-1883/ (Japanese)
	<u>Develop an Urban Energy Supply</u> <u>and Demand Simulator and</u> <u>Formulate a Future Energy Plan for</u> <u>Fukuoka</u> Goal for 2030: Develop an urban energy supply and demand simulator	<u>Faculty of Human-</u> Environment Studies	<u>Professor</u>	<u>Daisuke</u> Sumiyoshi	Develop methods for forecasting the supply and demand of time-varying urban and building energy (Initiative Period: 2022–2024)	Develop an urban energy supply and demand simulator that couples GIS with buildings and facilities (Initiative Period: 2025–2027)	Create a platform to assess the impact of the introduction of elemental energy technologies (Initiative Period: 2028–2030)	Develop a future urban energy plan to achieve carbon neutrality for Fukuoka City (Initiative Period: 2028–2030)	_	Collaborate with the Mechanical and Systems Engineering major of the Faculty of Science and Engineering Create a CO_2 reduction scenario for the Tenjin area in collaboration with the Meiji-dori Development Council	http://www.tenjin-mdc.org/wp- content/themes/mdc_2021renew al/pdf/activity/2026_action_plan. pdf (Japanese)
	Plan the Infrastructure of Future Cities and Conduct Regional Design to Achieve a Carbon-Neutral Society Goal for 2030: Propose an energy- independent, recycling-oriented, future city model utilizing DER and Smart Grid	<u>New Campus Planning</u> <u>Office</u>	Professor	<u>Takeru</u> Sakai	Conceptualize an energy- independent, recycling-oriented, future city model utilizing DER and Smart Grid (Initiative Period: 2022–2023)	Design future cities (for specific regions) to achieve a carbon-neutral society (Initiative Period: 2024–2026)	Develop energy infrastructure plans and ZEB specification standards appropriate for the targeted regions (Initiative Period: 2024–2026)	Plan and develop energy supply and demand plans for targeted regions based on energy conservation, creation, storage, and distribution technologies (Initiative Period: 2024–2030)		Seek to collaborate with FDC (Fukuoka Startup Consortium and FUKUOKA Smart EAST Promotion Consortium).	https://en.smartcity.fukuoka.jp

Unit Name: Decarbonization Unit

Unit Leader Name: Yoshio Hisaeda

Group Leader Name: Akihito Ozaki

New Urban Model Proposal: Research and Education, Industry-Academia Collaboration, Social Implementation and Future Prospects

Promoting comprehensive efforts from advanced research and education to industry-academia collaboration and social implementation

Research and Education	Industry-Academia Collaboration	Social Implementation	Future Prospects
<section-header><text><text><text><text></text></text></text></text></section-header>	 Design and construction of zero-energy buildings by simulating the architectural environment using building data exchange technology Developing and implementing the BeCAT Program to integrate urban and architectural environment technology with design Developing optimal control and nudge systems for architectural environments and energy using IoT/AI for the Society 5.0 era 	 International expansion of BDE and architectural environment simulation technologies Special evaluation methods as outlined in laws regarding the promotion of quality assurance (approved by the Minster of Land, Infrastructure, Transport and Tourism) Design and construction of zero-energy buildings Fukuoka Green Innovation Challenge, Itoshima City's new city hall Planning, development, and creation of future city models to realize a decarbonized society 	Strengthening collaboration both within and outside the university Toward a Decarbonized Society Urban and Architectural Environment Design Center • Implement technologies for the conservation, creation, storage, and distribution of energy in society ZEB, BEMS, renewable energy, distributed energy, next-generation power grids, etc.
User National University (CA Program) User and practicum courses (the redits or more) Dop and JDP Duble degree program (Master's program) Collaboration (DDP) Double degree program (DDD) Tongij University (t) credits or more) Collaboration (DDP) Dint degree program (Doctoral program) Tongij University (t) credits or more) Collaboration (DDP) This fail of the doctoral program (Doctoral program) Four university collaboration (CAP Program) Construint (DDP) This fail of the doctoral program (Doctoral program) Four university collaboration (CAP Program) Construint (DDP) This fail of the doctoral program (DDP) Four university collaboration (CAP Program) Construint (DDP) This fail of the doctoral program (DDP)	 Developing a municipal energy supply and demand simulator and formulating a future energy plan for Fukuoka Planning infrastructure facilities and regional designs for future cities (in specific regions) to achieve a deserberized accests 	<complex-block></complex-block>	 Propose a decarbonized city model LCCM Smart City Contribute to the response to the climate crisis Zero-emission, sustainable recycling-based cities and architectural environment design 40% reduction in greenhouse gases produced by buildings
National University of Singapore (Credit transfer up to 15 credits) New partner universities New partner universities	decardonized society	Balancing energy distribution between ad consumption of energy.	∭∥ 九州大学

Prepared by the Cabinet Office

KYUSHU UNIVERSITY

Group Name	Casl	Project Manager			Action Itom 1	Action Itom 2	Action Itom 2	Action Item 4	Action Item 5	Collaborations (e.g., Other groups,	Project LIPI
	Goal	Affiliation	Position	Name	Action Item 1	Action Item 2	Action Item 5	Action item 4	Action item 5	other units, DDIn ²)	FIOJECI UKL
Remapping a Sustainable Energy Future	<u>Group-wide:</u> Goal for 2030: Remap a Sustainable Energy Future				Research and development of offshore wind power generation (Initiative Period: 2022–2030)	Research and development of a sustainability value assessment model for energy technologies (Initiative Period: 2022–2030)	Conduct R&D on the socioeconomic evaluation of energy conversion (Initiative Period: 2022–2030)	Research and development of geothermal power generation (Initiative Period: 2022–2030)	_	Collaborate with the Decarbonization Unit and other groups in the Integrated Initiative for Designing Future Society and the Environmental and Economic Policy Research Group in the Environment and Food Unit, among others	_
	<u>Research and Develop Offshore</u> <u>Wind Power Generation:</u> Goal for 2030: Research and develop offshore wind power generation	<u>Research Institute for</u> Applied Mechanics	<u>Professor</u>	<u>Changhon</u> g Hu	Conduct research into wind energy science integrating atmospheric physics, ocean physics, and fluid dynamics (Initiative Period: 2022–2030)	Conduct research, development, and social implementation based on integrative knowledge to promote the widespread establishment of large-scale offshore wind farms (Initiative Period: 2025–2030)	_	_	_	Collaborate with OIP and the Kyushu University Research and Education Center for Offshore Wind	https://recow.kyushu- u.ac.jp/english/
	Research and Development of a Sustainability Value Assessment Model for Energy Technologies: Goal for 2030: Research and development of a sustainability value assessment model for energy technologies	<u>Faculty of Engineering</u>	<u>Professor</u>	<u>Shunsuke</u> <u>Managi</u>	Develop an ESG assessment framework that accounts for the life cycle of energy technologies (Initiative Period: 2022–2025)	Develop a model for evaluating the impact of energy technology on natural, artificial, and human capital using the Inclusive Wealth Index (Initiative Period: 2025–2027)	Evaluate domestic and international energy technologies, including new technologies such as direct air capture (DAC) for social implementation (Initiative Period: 2027–2030)	_	_	Collaborate with the Decarbonization Unit and other groups in the Integrated Initiative for Designing Future Society	https://urban-institute.kyushu- u.ac.jp/en/
	Research and Development of the Socioeconomic Evaluation of Energy Conversion Goal for 2030: Research and development of the socioeconomic evaluation of energy conversion	<u>International Institute</u> <u>for Carbon-Neutral</u> <u>Energy Research (I²</u> <u>CNER)</u>	<u>Associate</u> Professor	<u>Andrew</u> Chapman	Clarify the impact of energy conversion on societal, economic, and environmental indicators (Initiative Period: 2022–2030)	Conduct Techno-economic evaluation (TEA) of future energy systems (Initiative Period: 2022–2030)	Elucidate the nexus of technology, people, and systems associated with energy conversion (Initiative Period: 2022–2030)	_	_	Conduct research in cooperation with I ² CNER and the Faculty of Economics	http://chapman-lab.com/
	Research and Development into Achieving Geothermal Goals under the Sixth Strategic Energy Plan: Goal for 2030: Research and development into achieving geothermal goals under the Sixth Strategic Energy Plan	Faculty of Engineering	<u>Professor</u>	<u>Yasuhiro</u> <u>Fujimitsu</u>	Develop investigative and evaluative technologies for supercritical geothermal systems (Initiative Period: 2022–2030)	Enhance the sustainability of conventional geothermal power generation (Initiative Period: 2022–2030)	Increase the social acceptability of geothermal power to increase generation capacity (Initiative Period: 2022–2030)		_	Collaborate with the Platform of Inter/Transdisciplinary Energy Research	https://geothermics.mine.kyush u-u.ac.jp/index_e.html
	Research and Development into Achieving Nuclear Power Generation Goals under the Sixth Strategic Energy Plan: Goals for 2030: Research and development on new possibilities for nuclear energy in the field of energy supply	Faculty of Engineering	Professor	<u>Nozomu</u> Fujimoto	Develop characterization technology for advanced nuclear reactors (high- temperature gas-cooled reactors) (Initiative Period: 2022–2030)	Research the environmental impact of advanced nuclear reactors (Initiative Period: 2022–2030)	Explore new applications for advanced nuclear reactors (Initiative Period: 2022–2030)			Collaborate with the Platform of Inter/Transdisciplinary Energy Research	https://www.qpn.kyushu- u.ac.jp/lab7/index.html (Japanese)

Unit Name: Decarbonization Unit

<u>Unit Leader Name: Yoshio Hisaeda</u>

Group Leader Name: Kentaro Yoshida

Remapping a Sustainable Energy Future:

Environmental Impact on Mining Resources

Governance Structure

Working Environment

From Interdisciplinary Research and Education to Social Collaboration and Implementation

Applying Integrative Knowledge from the Natural and Social Sciences to Advanced Research and Education

Research and Education	Interdisciplinary Industry-Academia- Government Collaboration	Demonstration	Implementation and Future Prospects
 Offshore Wind Power Generation Research and Education Center for Offshore Wind Research Institute for Applied Mechanics, Faculty of Engineering Professional Development and Education for the Offshore Wind Power Industry Geothermal Energy Research Faculty of Engineering (Department of Earth Resources Engineering) IICA (Intensive Training for Geothermal Resource Engineers) 	 Consortiums with the Offshore Wind Power Industry Training and Collaboration with New Domestic Industries Joint Collaborative Research with Geothermal Power Companies Collaboration with Major Domestic Companies as well as the National and Local Governments 	 Offshore Wind Power-Related Facilities Chikushi Campus, Ito Campus, Off-Campus Demonstration Facilities Geothermal Power Generation Ito Campus, Domestic and International Geothermal Demonstration Facilities Nuclear Power-Related Facilities 	 Promoting Renewable Energy and Decarbonization Toward Carbon Neutrality by 2050 (Expanding the use of renewable energy with growth potential, such as offshore wind power and geothermal energy, as well a new types of nuclear reactors) Contributing to Domestic Industries and Professional Development
 Nuclear Research Faculty of Engineering (Department of Applied Quantum Physics and Nuclear Engineering) Assessment of the Sustainability of Energy Technologies Urban Institute 	 Joint Collaborative Research with Nuclear Power- Related Companies Collaboration with Major Domestic Companies as well as the National and Local Governments Research on the Sustainability of Energy Technologies 	 Sustainability Research Ito Campus, Businesses, Local Governments, etc. Socio-Economic Evaluation Ito Campus 	 (Ensuring energy self-sufficiency by harnessing the university's strengths in renewable energy research, industry-academia-government collaboration, and professional development) Making Recommendations for Sustainab Energy Technologies from a Socio- Economic Perspective (Utilizing Life Cycle Assessment [LCA], Inclusive Wealth Index etc.)
• Socio-Economic Evaluation of Energy Conversion International Institute for Carbon-Neutral Energy Research (I ² CNER), Faculty of Economics	 International Collaboration with the United Nations, Inclusive Wealth Index, etc. Socio-Economic Evaluation of Energy Conversion Collaboration with Domestic and International Research Institutions 		• Making Recommendations for a Reconstruct Approach to Remapping a Sustainable Energy Future for Society that Leverages Integrative Knowledge
	Environment Air Pollution Environmental Impact on Water Resources Environmental Impact on Land Environmental Impact on Land Resources Environmental Impact on Land Environmental Environment		

Technology A

erav Technoloav I

abor Safety and Hea

Group Name	Goal	Project Manager			Action Item 1	Action Item 2	Action Item 3	Action Item 4	Action Item 5	Collaborations (e.g., Other	Project URI
	Coal	Affiliation	Position	Name		Action Ren 2	Action terms	Action term	Action terms	groups, other units, DDIn ²)	
Photochemical Technology Innovation Group	<u>Group-wide:</u> Goal for 2030: Create photochemical technologies that will revolutionize the world				Develop and elucidate the mechanism of CO ₂ photoreduction catalysts that function harmoniously (Initiative Period: 2023–2030)	Pursue functional chemistry of the triplet state (Initiative Period: 2023–2030)	Develop CO ₂ Sensing and Conversion Technologies: (Initiative Period: 2023–2030)	Develop energy-saving light sources utilizing organic optical materials (Initiative Period: 2023–2030)	<u>Create Organic Devices that</u> <u>Can be Manufactured at a</u> <u>Low Cost:</u> (Initiative Period: 2023–2030)		_
	Develop and Elucidate the Mechanism of CO ₂ Photoreduction Catalysts that Function Harmoniously: Goal for 2030: Develop catalysts that produce a variety of useful compounds from CO ₂	<u>Faculty of Science</u>	<u>Associate</u> <u>Professor</u>	<u>Kiyoshi</u> <u>Miyata</u>	Facilitate the tracing of the one-electron reduction process for artificial photosynthetic photocatalysts (Initiative Period: 2023–2025)	Develop spectroscopic techniques to observe the downstream effects of multi- electron transfer photoreactions (Initiative Period: 2023–2030)	Research highly efficient catalysts based on information on intermediates in the reaction process (Initiative Period: 2023–2030)			 Collaborate and cooperate with the Platform of Inter/Transdisciplinary Energy Research Engage in cooperative research with external parties in Grant-in-Aid Transformative Research Areas (B) 	http://www.chem.kyushu- univ.jp/Spectrochem/home-en/
	<u>Research Functional Chemistry of</u> <u>the Triplet State:</u> Goal for 2030: Create quantum technologies utilizing photo-excited molecules	<u>Faculty of Engineering</u>	<u>Associate</u> Professor	<u>Nobuhiro</u> Yanai	Harness unused sunlight through up-conversion (Initiative Period: 2023–2028)	Integrate up-conversion and artificial photosynthesis (Initiative Period: 2023–2030)	Replace thermal processes with optical ones through up- conversion (Initiative Period: 2023–2030)	Establish venture businesses to achieve social implementation of up- conversion (Initiative Period: 2025–2030)		 Collaborate and cooperate with the Platform of Inter/Transdisciplinary Energy Research 	https://www.chem.kyushu- u.ac.jp/~cstm/laboratory/laborat ory_353.php (Japanese)
	<u>Develop CO₂ Sensing and</u> <u>Conversion Technologies:</u> Goal for 2030: Conduct research on innovative molecular conversion	<u>Faculty of Engineering</u>	<u>Associate</u> Professor	<u>Toshikazu</u> <u>Ono</u>	Develop a fluorescent sensor to detect the concentration of CO ₂ by utilizing photo-induced electron transfer (Initiative Period: 2023–2025)	Develop a hydrogel that facilitates fluorescent detection of CO ₂ adsorption/desorption behavior (Initiative Period: 2023–2025)	Develop a biomimetic catalyst that absorbs CO ₂ , converts it to a C ₁ source, and releases it (Initiative Period: 2023–2025)			 Collaborate and cooperate with the Platform of Inter/Transdisciplinary Energy Research 	https://www.chem.kyushu- u.ac.jp/~cstm/laboratory/laborat ory_311.php (Japanese)
	<u>Develop Energy-Saving Light</u> <u>Sources:</u> Goal by 2030: Develop energy- saving light sources utilizing organic optical materials	<u>Faculty of Engineering</u>	<u>Associate</u> <u>Professor</u>	<u>Hajime</u> <u>Nakanotani</u>	Develop an ultra-low power light source using charge- transfer excitation states (Initiative Period: 2023–2025)	Develop a molecular heat pump driven by low-energy light (Initiative Period: 2023–2025)	Develop a heat recovery system using solar and ultra- low power light sources (Initiative Period: 2023–2030)			 Collaborate and cooperate with the Platform of Inter/Transdisciplinary Energy Research 	https://www.cstf.kyushu- u.ac.jp/~adachilab/lab/?lang=en
	<u>Create Organic Devices that Can be</u> <u>Manufactured at a Low Cost:</u> Goal for 2030: Conduct research on low-cost devices through coating processes	Institute for Materials Chemistry and Engineering	<u>Associate</u> <u>Professor</u>	<u>Ken</u> <u>Albrecht</u>	Develop a suite of materials for the production of field emission devices using inkjet printers (Initiative Period: 2023–2025)	Develop high-efficiency field emission devices using radicals (Initiative Period: 2023–2027)	Develop new chemical processes catalyzed by electric fields (Initiative Period: 2023–2030)			 Collaborate and cooperate with the Platform of Inter/Transdisciplinary Energy Research 	https://www.alken- lab.com/english.html

Unit Name: Decarbonization Unit

Unit Leader Name: Yoshimi Sonoda

<u>Group Leader Name: Kiyoshi Miyata</u>

Solving Decarbonization and Energy Issues through the Creation of New Photochemical Technologies

Collaboration Across Departments and Campuses

Photomolecular Technology

Breakthroughs in Light Energy Utilization Enabled by Molecular Technology

Collaboration Inside and

Outside the University

- High-Energy Light Production through Photon Upconversion for Artificial Photosynthesis and Solar Cells
- Near-Infrared Low-Energy Light OLED for Composite Molecular Materials
- Energy Conversion Molecular Materials for Low-Cost, Fully-Coated Devices
- High-Order Photofunctional Molecules for Cutting-Edge Spectroscopic Analysis

Challenges Posed by Energy Issues: - Inefficiency of Low-Energy Light Utilization - High Cost of Device Manufacturing Process - Lack of Transparency in the Energy Conversion Process Solving Social Issues Toward Social Implementation

Example:

Development of Solar Energy Utilization for Comprehensive Artificial Photosynthesis Systems

Group Name	Goal	Project Manager			- Action Item 1	Action Item 2	Action Item 3	Action Item 4	Action Item 5	Collaborations (e.g., Other groups,	Project URI
	Cour	Affiliation	Position	Name		71010111101112				other units, DDIn ²)	
Promoting Regional Cooperation	<u>Group-wide:</u> Goal for 2030: Implement five energy-saving technologies in collaboration with local governments				Build and strengthen partnerships with local governments in the use of local energy (Initiative Period: 2022–2030)	Conduct proof-of-concept trials of energy, information, and food ecosystems in Itoshima Science Village (Initiative Period: 2022–2025)	Promote collaboration with industries in the Kyushu region aimed at implementing university technologies (Initiative Period: 2022–2030)	_	_		
	<u>Direct Current (DC) Microgrids:</u> Goal for 2030: Lower renewable energy output control to zero	<u>Global Innovation</u> <u>Center</u>	<u>Professor</u>	<u>Yuichi</u> <u>Harada</u>	Demonstrate the usefulness of DC microgrids using renewable energy (Initiative Period: 2022–2026)	Promote the use of DC microgrids and evaluate their utilization (Initiative Period: 2022–2024)		_	_	 Collaborate with companies connected to the GIC KOINE Project Division Collaborate with JEITA's Green IT Promotion Committee 	https://www.gic.kyushu- u.ac.jp/j/research/koine/coldtec h.html
	<u>Sustainability Assessment</u> <u>Model:</u> Goal for 2030: Establish a sustainability value assessment model for energy technologies	<u>Global Innovation</u> <u>Center</u>	<u>Professor</u>	<u>Yuichi</u> Harada	Construct and apply a sustainability value assessment model for energy technologies and apply it to technological development (Initiative Period: 2022–2024)	Evaluate the sustainability value assessment model through its application in Nogata City and Itoshima City (Initiative Period: 2023–2025)	, —	_	_	 Collaborate with the Q-PIT Energy and Society Cluster Collaborate with Nogata City and Itoshima City 	
	Implementation of University Technology: Goal for 2030: Achieve multiple implementations of energy technology in collaboration with industries in the Kyushu region	Faculty of Economics	<u>Professor</u>	<u>Megumi</u> <u>Takata</u>	Promote collaboration with the Kyushu semiconductor industry to expand the use of DC microgrids (Initiative Period: 2022–2026)	Conduct regional implementation of technologies developed by other groups (Initiative Period: 2022–2030)				 Collaborate with the Kyushu Semiconductor & Electronics Technology Innovation Association (SIIQ) 	https://siiq.jp/en/index.html
	Implementation Throughout the Region: Goal for 2030: Develop and propose a strategy for the decarbonization of the entire Kyushu region	<u>Platform of</u> <u>Inter/Transdisciplinary</u> <u>Energy Research</u>	<u>Vice</u> <u>President</u>	<u>Kazunari</u> <u>Sasaki</u>	Integrate the efforts of each of the five groups and implement them throughout the region (Initiative Period: 2022–2030)					Collaborate with the relevant external organizations, such as the Kyushu Area Renewable Energy Collaboration Committee of the Japan Association of National Universities, the Renewable Energy Cooperation Committee of the Kyushu Regional Strategy Council, and the Fukuoka Prefecture Hydrogen Green Growth Strategy Conference	https://q-pit.kyushu-u.ac.jp/en/

Unit Name: Decarbonization Unit

Unit Leader Name: Yoshio Hisaeda

Group Leader Name: Megumi Takata

Achieve energy-saving technology implementations in collaboration with local governments

Using DC Microgrids to Solve AC Grid Issues

KYUSHU UNIVERSITY

Concept Rendering

 \diamond DC Power Carport system \diamond

Power semiconductors play a key role in facilitating the control needed to expand DC microgrids. We will accelerate implementation by collaborating with the semiconductor industry in the Kyushu region.

Contributions of the National Universities in Kyushu:

Relationship between the Governors' Association, Strategy Council, Kyushu Economic Federation and the "Committee for the Promotion of Renewable Energy Industrialization" of the Association of National Universities' Kyushu Branch

Promote decarbonization and socially implement renewable energy in Kyushu